
Approximation Strategies for Incomplete MaxSAT

Saurabh Joshi1 Prateek Kumar1 Ruben Martins2 Sukrut Rao1

भारतीय ूौкोѠगकҴ सःंथान हदैराबाद
Indian Institute of Technology Hyderabad

1IIT Hyderabad 2Carnegie Mellon University

SAT+SMT School 2019, IIT Bombay

8th December 2019

. .

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1

(x1 ∨ x2)∧

Unsat
w2

(¬x1 ∨ x2)∧

w3

(x1 ∨ ¬x2)∧

w4

(¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧

(
∑

ri) ≤ k

(¬x1 ∨ x2 ∨ r2)∧

Cardinality Constraint

(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k

(Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1

(x1 ∨ x2)∧ Unsat

w2

(¬x1 ∨ x2)∧

w3

(x1 ∨ ¬x2)∧

w4

(¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧

(
∑

ri) ≤ k

(¬x1 ∨ x2 ∨ r2)∧

Cardinality Constraint

(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k

(Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1

(x1 ∨ x2)∧ Unsat

w2

(¬x1 ∨ x2)∧

w3

(x1 ∨ ¬x2)∧

w4

(¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧

(
∑

ri) ≤ k

(¬x1 ∨ x2 ∨ r2)∧

Cardinality Constraint

(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k

(Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1

(x1 ∨ x2)∧ Unsat

w2

(¬x1 ∨ x2)∧

w3

(x1 ∨ ¬x2)∧

w4

(¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧ (
∑

ri) ≤ k
(¬x1 ∨ x2 ∨ r2)∧ Cardinality Constraint
(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k (MaxSAT)

(Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1 (x1 ∨ x2)∧ Unsat
w2 (¬x1 ∨ x2)∧
w3 (x1 ∨ ¬x2)∧
w4 (¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧ (
∑

ri) ≤ k
(¬x1 ∨ x2 ∨ r2)∧ Cardinality Constraint
(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k (Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxSAT

w1 (x1 ∨ x2)∧ Unsat
w2 (¬x1 ∨ x2)∧
w3 (x1 ∨ ¬x2)∧
w4 (¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧

(
∑

ri) ≤ k

(¬x1 ∨ x2 ∨ r2)∧

Cardinality Constraint

(x1 ∨ ¬x2 ∨ r3)∧ (
∑

wi · ri) ≤ k
(¬x1 ∨ ¬x2 ∨ r4) PB Constraint

Minimize k (Weighted MaxSAT)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation for MaxSAT
▶ Operations Research
▶ Logistics
▶ Resource Allocation
▶ Computational Biology
▶ Fault Localization
▶ ... and many more

For many applications it may be desirable to find a good solution
(even if suboptimal) very quickly. That’s where incomplete solvers
come into play!

Our contributions
▶ Weight relaxation based approximation
▶ Subproblem minimization based approximation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation for MaxSAT
▶ Operations Research
▶ Logistics
▶ Resource Allocation
▶ Computational Biology
▶ Fault Localization
▶ ... and many more

For many applications it may be desirable to find a good solution
(even if suboptimal) very quickly.

That’s where incomplete solvers
come into play!

Our contributions
▶ Weight relaxation based approximation
▶ Subproblem minimization based approximation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation for MaxSAT
▶ Operations Research
▶ Logistics
▶ Resource Allocation
▶ Computational Biology
▶ Fault Localization
▶ ... and many more

For many applications it may be desirable to find a good solution
(even if suboptimal) very quickly. That’s where incomplete solvers
come into play!

Our contributions
▶ Weight relaxation based approximation
▶ Subproblem minimization based approximation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation for MaxSAT
▶ Operations Research
▶ Logistics
▶ Resource Allocation
▶ Computational Biology
▶ Fault Localization
▶ ... and many more

For many applications it may be desirable to find a good solution
(even if suboptimal) very quickly. That’s where incomplete solvers
come into play!

Our contributions
▶ Weight relaxation based approximation
▶ Subproblem minimization based approximation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2)

∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2)

∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3)

∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3)

∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5)

. . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .

¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11
▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4 ≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4 ≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)

▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4 ≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4 ≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . .)
▶ Polynomial size encoding when all the weights are same. This

can be leveraged for incomplete solving.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form

▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)

10 3 27 12 11 2 4 26 25

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order

▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)

2 3 4 10 11 12 25 26 27

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster

▶ Keep dividing clusters by picking the largest weight difference
as a cluster boundary

▶ Replace weights by a representative weight of a cluster (say,
arithmetic mean)

2 3 4 10 11 12 25 26 27

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary

▶ Replace weights by a representative weight of a cluster (say,
arithmetic mean)

2 3 4 10 11 12 25 26 27

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary

▶ Replace weights by a representative weight of a cluster (say,
arithmetic mean)

2 3 4 10 11 12 25 26 27

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k

▶ Modified problem: Minimize k in (
∑

w′
i · ri) ≤ k

▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k

▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat

▶ Keep reporting assignments ν with smallest (
∑

wi · ri) seen so
far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weight relaxation
▶ As m increases accuracy increases. No approximation when

m = #weights
▶ Formula size increases as m increases thus making it more

difficult for the solver
▶ If time permits, keep increasing m

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤
r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2

r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2

r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 1

r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 1

r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 2

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 2

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach

▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold

▶ Switch to alternatives if time permits (complete search, local
search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments
▶ Techniques implemented as Open-WBO-Inc on top of

Open-WBO framework
▶ MaxSAT evaluations 2017 benchmarks used
▶ Compared maxroster (MSE17-1), WPM3 (MSE17-2),

QMaxSAT (MSE17-complete-2), apx-weight, apx-subprob

▶ Score =

 ∑
b∈Benchmarks

(
best(b)

solver(b)

)
|Benchmarks|

▶ The solver providing the best result for a benchmark scores 1
▶ The score deteriorates as the result deviates from the best

known
▶ Score of 0 if solver fails for some reason.

▶ Timeout = 10s, 60s, 300s

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Results: Clustering effect on Formula size

0 1 2 3 4 5

0

1,000

2,000

3,000

#Clusters (m)

Ra
tio

#
Cl

au
se

sa
fte

rP
B

en
co

di
ng

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Results: Clustering effect on apx-weight performance

0 1 2 3 4 5

0.65

0.7

0.75

0.8

#Clusters (m)

Sc
or

e

Effect of clustering on apx-weight

timeout=10s
timeout=60s
timeout=300s

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Results: Clustering effect on apx-subprob performance

1 2 3 4 5 50 100#weights

0.75

0.8

0.85

0.9

#Clusters (m)

Sc
or

e

Effect of clustering on apx-subprob

timeout=10s
timeout=60s
timeout=300s

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Results: Comparision with other solvers

10 60 300

0.7

0.8

0.9

Timeout

Sc
or

e

QMaxSAT WPM3 apx-weight
maxroster apx-subprob

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Results: Validation by others
▶ apx-weight placed fourth in MaxSAT 2018 evaluations in

weighted incomplete tracks for 60s and 300s Timeout
▶ apx-subprob placed second in MaxSAT 2018 evaluations in

weighted incomplete track for 300s Timeout
▶ apx-subprob placed first in MaxSAT 2018 evaluations in

weighted incomplete track for 60s Timeout
▶ apx-subprob with switching to complete search placed sixth

and fourth in MaxSAT 2019 in weighted incomplete tracks for
300s and60s Timeout respectively

▶ apx-subprob with switching to local search placed third in
MaxSAT 2019 in weighted incomplete tracks for 300s and60s
Timeout

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thank You!
Try Open-WBO-Inc :

https://github.com/sbjoshi/Open-WBO-Inc

https://github.com/sbjoshi/Open-WBO-Inc

