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MaxSAT

w1

(x1 ∨ x2)∧

Unsat
w2

(¬x1 ∨ x2)∧

w3

(x1 ∨ ¬x2)∧

w4

(¬x1 ∨ ¬x2)

(x1 ∨ x2 ∨ r1)∧

(
∑

ri) ≤ k

(¬x1 ∨ x2 ∨ r2)∧

Cardinality Constraint

(x1 ∨ ¬x2 ∨ r3)∧

(
∑

wi · ri) ≤ k

(¬x1 ∨ ¬x2 ∨ r4)

PB Constraint

Minimize k

(Weighted MaxSAT)
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Motivation for MaxSAT
▶ Operations Research
▶ Logistics
▶ Resource Allocation
▶ Computational Biology
▶ Fault Localization
▶ ... and many more

For many applications it may be desirable to find a good solution
(even if suboptimal) very quickly. That’s where incomplete solvers
come into play!

Our contributions
▶ Weight relaxation based approximation
▶ Subproblem minimization based approximation
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GTE for Pseudo-Boolean Constraints
(O : o2, o3, o5, o6, o8, o9, o11 : 11)

(A : a2, a3, a5 : 5) (B : b3, b6 : 6)

(C : l1 : 2) (D : l2 : 3) (E : l3 : 3) (F : l4 : 3)

▶ Encoding 2l1 + 3l2 + 3l3 + 3l4

≤ 5

▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . . )
▶ Polynomial size encoding when all the weights are same.
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▶ (¬l1 ∨ a2) ∧(¬l2 ∨ a3) ∧(¬l1 ∨ ¬l2 ∨ a5) . . .
¬o6 ∧ ¬o8 ∧ ¬o9 ∧ ¬o11

▶ Worst case exponential size (e.g., weights 1, 2, 4, 8, . . . )
▶ Polynomial size encoding when all the weights are same. This

can be leveraged for incomplete solving.
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Weight relaxation
▶ m = 3 are the number of clusters we want to form

▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)

10 3 27 12 11 2 4 26 25

3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far
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Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k

▶ Modified problem: Minimize k in (
∑

w′
i · ri) ≤ k

▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far
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Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k

▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far
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Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat

▶ Keep reporting assignments ν with smallest (
∑

wi · ri) seen so
far
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Weight relaxation
▶ m = 3 are the number of clusters we want to form
▶ Sort clauses by weights in ascending order
▶ Initially everything in one cluster
▶ Keep dividing clusters by picking the largest weight difference

as a cluster boundary
▶ Replace weights by a representative weight of a cluster (say,

arithmetic mean)
3 3 3 11 11 11 26 26 26

▶ Original problem: Minimize k in (
∑

wi · ri) ≤ k
▶ Modified problem: Minimize k in (

∑
w′

i · ri) ≤ k
▶ Keep decreasing k until you reach Unsat
▶ Keep reporting assignments ν with smallest (

∑
wi · ri) seen so

far
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Weight relaxation
▶ As m increases accuracy increases. No approximation when

m = #weights
▶ Formula size increases as m increases thus making it more

difficult for the solver
▶ If time permits, keep increasing m
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤
r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
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∑
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 1

r4 + r5 + r6 + r7 ≤

1
r1

1
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4
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4
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 1

r4 + r5 + r6 + r7 ≤

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
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20
r8

20
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20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
r7

20
r8

20
r9

20
r10

▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 2
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r1

1
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4
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 2
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1
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1
r3

4
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4
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2
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r3

4
r4

4
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1

1
r2

1
r3

4
r4

4
r5

4
r6

4
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▶ Greedy approach

▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
r4 + r5 + r6 + r7 ≤ 3

1
r1
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4
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4
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4
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold

▶ Switch to alternatives if time permits (complete search, local
search)
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Subproblem Minimization
▶ Weight at any level is higher than sum of all the weights

below that level (BMO property)
▶ Starting from heaviest (highest) level keep reducing (

∑
ri)

r8 + r9 + r10 ≤ 2
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▶ Greedy approach
▶ Does not converge to optimal if BMO property does not hold
▶ Switch to alternatives if time permits (complete search, local

search)
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Experiments
▶ Techniques implemented as Open-WBO-Inc on top of

Open-WBO framework
▶ MaxSAT evaluations 2017 benchmarks used
▶ Compared maxroster (MSE17-1), WPM3 (MSE17-2),

QMaxSAT (MSE17-complete-2), apx-weight, apx-subprob

▶ Score =

 ∑
b∈Benchmarks

(
best(b)

solver(b)

)
|Benchmarks|

▶ The solver providing the best result for a benchmark scores 1
▶ The score deteriorates as the result deviates from the best

known
▶ Score of 0 if solver fails for some reason.

▶ Timeout = 10s, 60s, 300s
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Results: Clustering effect on Formula size
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Results: Clustering effect on apx-weight performance
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Results: Clustering effect on apx-subprob performance
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Results: Comparision with other solvers
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Results: Validation by others
▶ apx-weight placed fourth in MaxSAT 2018 evaluations in

weighted incomplete tracks for 60s and 300s Timeout
▶ apx-subprob placed second in MaxSAT 2018 evaluations in

weighted incomplete track for 300s Timeout
▶ apx-subprob placed first in MaxSAT 2018 evaluations in

weighted incomplete track for 60s Timeout
▶ apx-subprob with switching to complete search placed sixth

and fourth in MaxSAT 2019 in weighted incomplete tracks for
300s and60s Timeout respectively

▶ apx-subprob with switching to local search placed third in
MaxSAT 2019 in weighted incomplete tracks for 300s and60s
Timeout
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Thank You!
Try Open-WBO-Inc :

https://github.com/sbjoshi/Open-WBO-Inc

https://github.com/sbjoshi/Open-WBO-Inc

